Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"
From Combinatorics Wiki
(11 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
| '''4''' ||style="background-color: beige;" | '''13'''|| style="background-color: beige;" | '''25''' ||style="background-color: beige;" | '''41''' || style="background-color: beige;" | '''61''' ||style="background-color: beige;" | '''85''' ||style="background-color: beige;" | '''113''' ||style="background-color: beige;" | '''145''' ||style="background-color: beige;" | '''181''' ||style="background-color: beige;" | '''221''' ||style="background-color: beige;" | '''265''' ||style="background-color: beige;" | '''313''' ||style="background-color: beige;" | '''365''' ||style="background-color: beige;" | '''421''' ||style="background-color: beige;" | '''481''' ||style="background-color: beige;" | '''545''' | | '''4''' ||style="background-color: beige;" | '''13'''|| style="background-color: beige;" | '''25''' ||style="background-color: beige;" | '''41''' || style="background-color: beige;" | '''61''' ||style="background-color: beige;" | '''85''' ||style="background-color: beige;" | '''113''' ||style="background-color: beige;" | '''145''' ||style="background-color: beige;" | '''181''' ||style="background-color: beige;" | '''221''' ||style="background-color: beige;" | '''265''' ||style="background-color: beige;" | '''313''' ||style="background-color: beige;" | '''365''' ||style="background-color: beige;" | '''421''' ||style="background-color: beige;" | '''481''' ||style="background-color: beige;" | '''545''' | ||
|- | |- | ||
− | | '''5''' ||style="background-color: | + | | '''5''' ||style="background-color: magenta;" | '''16''' ||style="background-color: magenta;" | '''36''' ||style="background-color: magenta;" | '''64''' ||style="background-color: magenta;" | '''100''' ||style="background-color: magenta;" | '''144''' ||style="background-color: magenta;" | '''196''' ||style="background-color: magenta;" | '''256''' ||style="background-color: magenta;" | '''324''' ||style="background-color: magenta;" | '''400''' ||style="background-color: magenta;" | '''484''' ||style="background-color: magenta;" | '''576''' ||style="background-color: magenta;" | '''676''' ||style="background-color: magenta;" | '''784''' ||style="background-color: magenta;" | '''900''' ||style="background-color: magenta;" | '''1 024''' |
|- | |- | ||
| '''6''' ||style="background-color: magenta;" | '''21''' ||style="background-color: magenta;" | '''55''' ||style="background-color: magenta;" | '''117''' ||style="background-color: magenta;" | '''203''' ||style="background-color: magenta;" | '''333''' ||style="background-color: magenta;" | '''515''' ||style="background-color: magenta;" | '''737''' ||style="background-color: magenta;" | '''1 027''' ||style="background-color: magenta;" | '''1 393''' ||style="background-color: magenta;" | '''1 815''' ||style="background-color: magenta;" | '''2 329''' ||style="background-color: magenta;" | '''2 943''' ||style="background-color: magenta;" | '''3 629''' ||style="background-color: magenta;" | '''4 431''' ||style="background-color: magenta;" | '''5 357''' | | '''6''' ||style="background-color: magenta;" | '''21''' ||style="background-color: magenta;" | '''55''' ||style="background-color: magenta;" | '''117''' ||style="background-color: magenta;" | '''203''' ||style="background-color: magenta;" | '''333''' ||style="background-color: magenta;" | '''515''' ||style="background-color: magenta;" | '''737''' ||style="background-color: magenta;" | '''1 027''' ||style="background-color: magenta;" | '''1 393''' ||style="background-color: magenta;" | '''1 815''' ||style="background-color: magenta;" | '''2 329''' ||style="background-color: magenta;" | '''2 943''' ||style="background-color: magenta;" | '''3 629''' ||style="background-color: magenta;" | '''4 431''' ||style="background-color: magenta;" | '''5 357''' | ||
Line 31: | Line 31: | ||
| '''15''' ||style="background-color: #81BEF7;" | '''96''' ||style="background-color: yellow;" | '''448''' ||style="background-color: orange;" | 1 420 ||style="background-color: #66ff66;" | 4 292 ||style="background-color: #66ff66;" | 12 232 ||style="background-color: #66ff66;" | 32 092 ||style="background-color: #66ff66;" | 68 944 ||style="background-color: #66ff66;" | 142 516 ||style="background-color: #66ff66;" | 276 928 ||style="background-color: #66ff66;" | 514 580 ||style="background-color: #66ff66;" | 908 480 ||style="background-color: #66ff66;" | 1 550 228 ||style="background-color: #66ff66;" | 2 566 712 ||style="background-color: #66ff66;" | 4 013 468 ||style="background-color: #66ff66;" | 6 155 056 | | '''15''' ||style="background-color: #81BEF7;" | '''96''' ||style="background-color: yellow;" | '''448''' ||style="background-color: orange;" | 1 420 ||style="background-color: #66ff66;" | 4 292 ||style="background-color: #66ff66;" | 12 232 ||style="background-color: #66ff66;" | 32 092 ||style="background-color: #66ff66;" | 68 944 ||style="background-color: #66ff66;" | 142 516 ||style="background-color: #66ff66;" | 276 928 ||style="background-color: #66ff66;" | 514 580 ||style="background-color: #66ff66;" | 908 480 ||style="background-color: #66ff66;" | 1 550 228 ||style="background-color: #66ff66;" | 2 566 712 ||style="background-color: #66ff66;" | 4 013 468 ||style="background-color: #66ff66;" | 6 155 056 | ||
|- | |- | ||
− | | '''16''' ||style="background-color: #81BEF7;" | '''112''' ||style="background-color: orange;" | 518 ||style="background-color: #66ff66;" | 1 788 ||style="background-color: #66ff66;" | 5 847 ||style="background-color: #66ff66;" | 17 733 ||style="background-color: #66ff66;" | | + | | '''16''' ||style="background-color: #81BEF7;" | '''112''' ||style="background-color: orange;" | 518 ||style="background-color: #66ff66;" | 1 788 ||style="background-color: #66ff66;" | 5 847 ||style="background-color: #66ff66;" | 17 733 ||style="background-color: #66ff66;" | 45 900 ||style="background-color: #66ff66;" | 107 748 ||style="background-color: #66ff66;" | 232 245 ||style="background-color: #66ff66;" | 479 255 ||style="background-color: #66ff66;" | 924 420 ||style="background-color: #66ff66;" | 1 702 428 ||style="background-color: #66ff66;" | 2 982 623 ||style="background-color: #66ff66;" | 5 209 347 ||style="background-color: #66ff66;" | 8 476 048 ||style="background-color: #66ff66;" | 13 588 848 |
|- | |- | ||
| '''17''' ||style="background-color: orange;" | '''130''' ||style="background-color: gold;" | 570 ||style="background-color: gold;" | 1 954 ||style="background-color: #66ff66;" | 6 468 ||style="background-color: #66ff66;" | 20 360 ||style="background-color: #66ff66;" | 57 684 ||style="background-color: #66ff66;" | 136 512 ||style="background-color: #66ff66;" | 321 780 ||style="background-color: #66ff66;" | 659 464 ||style="background-color: #66ff66;" | 1 350 820 ||style="background-color: #66ff66;" | 2 479 104 ||style="background-color: #66ff66;" | 4 557 364 ||style="background-color: #66ff66;" | 7 729 000 ||style="background-color: #66ff66;" | 13 275 108 ||style="background-color: #66ff66;" | 21 252 864 | | '''17''' ||style="background-color: orange;" | '''130''' ||style="background-color: gold;" | 570 ||style="background-color: gold;" | 1 954 ||style="background-color: #66ff66;" | 6 468 ||style="background-color: #66ff66;" | 20 360 ||style="background-color: #66ff66;" | 57 684 ||style="background-color: #66ff66;" | 136 512 ||style="background-color: #66ff66;" | 321 780 ||style="background-color: #66ff66;" | 659 464 ||style="background-color: #66ff66;" | 1 350 820 ||style="background-color: #66ff66;" | 2 479 104 ||style="background-color: #66ff66;" | 4 557 364 ||style="background-color: #66ff66;" | 7 729 000 ||style="background-color: #66ff66;" | 13 275 108 ||style="background-color: #66ff66;" | 21 252 864 | ||
|- | |- | ||
− | | '''18''' ||style="background-color: orange;" | '''138''' ||style="background-color: gold;" | 655 ||style="background-color: gold;" | 2 645 ||style="background-color: #66ff66;" | 8 | + | | '''18''' ||style="background-color: orange;" | '''138''' ||style="background-color: gold;" | 655 ||style="background-color: gold;" | 2 645 ||style="background-color: #66ff66;" | 8 425 ||style="background-color: #66ff66;" | 27 273 ||style="background-color: #66ff66;" | 80 940 ||style="background-color: #66ff66;" | 208 872 ||style="background-color: #66ff66;" | 492 776 ||style="background-color: #66ff66;" | 1 078 280 ||style="background-color: #66ff66;" | 2 202 955 ||style="background-color: #66ff66;" | 4 388 640 ||style="background-color: #66ff66;" | 8 068 383 ||style="background-color: #66ff66;" | 14 718 984 ||style="background-color: #66ff66;" | 25 609 955 ||style="background-color: #66ff66;" | 43 068 508 |
|- | |- | ||
− | | '''19''' ||style="background-color: orange;" | '''156''' ||style="background-color: gold;" | 722 ||style="background-color: gold;" | 2 696 ||style="background-color: #66ff66;" | 9 652 ||style="background-color: #66ff66;" | | + | | '''19''' ||style="background-color: orange;" | '''156''' ||style="background-color: gold;" | 722 ||style="background-color: gold;" | 2 696 ||style="background-color: #66ff66;" | 9 652 ||style="background-color: #66ff66;" | 31 440 ||style="background-color: #66ff66;" | 99 420 ||style="background-color: #66ff66;" | 258 040 ||style="background-color: #66ff66;" | 652 004 ||style="background-color: #66ff66;" | 1 416 256 ||style="background-color: #66ff66;" | 3 101 860 ||style="background-color: #66ff66;" | 6 100 520 ||style="background-color: #66ff66;" | 11 797 684 ||style="background-color: #66ff66;" | 21 659 528 ||style="background-color: #66ff66;" | 38 328 220 ||style="background-color: #66ff66;" | 66 601 304 |
|- | |- | ||
− | | '''20''' ||style="background-color: orange;" | '''171''' ||style="background-color: gold;" | 815 ||style="background-color: gold;" | 3 175 ||style="background-color: #66ff66;" | 12 396 ||style="background-color: #66ff66;" | | + | | '''20''' ||style="background-color: orange;" | '''171''' ||style="background-color: gold;" | 815 ||style="background-color: gold;" | 3 175 ||style="background-color: #66ff66;" | 12 396 ||style="background-color: #66ff66;" | 42 252 ||style="background-color: #66ff66;" | 132 720 ||style="background-color: #66ff66;" | 371 400 ||style="background-color: #66ff66;" | 930 184 ||style="background-color: #66ff66;" | 2 232 648 ||style="background-color: #66ff66;" | 4 947 880 ||style="background-color: #66ff66;" | 10 238 745 ||style="background-color: #66ff66;" | 20 452 920 ||style="background-color: #66ff66;" | 38 155 632 ||style="background-color: #66ff66;" | 70 612 644 ||style="background-color: #66ff66;" | 126 967 008 |
|} | |} | ||
</center> | </center> | ||
Line 1,288: | Line 1,288: | ||
|- | |- | ||
|42% | |42% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 3 732 560 | ||
+ | |- | ||
+ | |42% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 6 140 800 | ||
+ | |- | ||
+ | |42% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 9 785 072 | ||
+ | |- | ||
+ | |41% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 15 158 272 | ||
+ | |- | ||
+ | |41% | ||
|} | |} | ||
|- | |- | ||
Line 1,328: | Line 1,352: | ||
| 108 545 | | 108 545 | ||
|- | |- | ||
− | | | + | |42% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,360: | Line 1,384: | ||
|36% | |36% | ||
|} | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 8 405 905 | ||
|- | |- | ||
− | + | |35% | |
− | + | |} | |
− | + | | align="center" | | |
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 14 546 705 | ||
+ | |- | ||
+ | |36% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 24 331 777 | ||
+ | |- | ||
+ | |35% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 39 490 049 | ||
+ | |- | ||
+ | |34% | ||
+ | |} | ||
+ | |||
+ | |- | ||
+ | |||
+ | |||
+ | |||
|'''17''' | |'''17''' | ||
| align="center" | | | align="center" | | ||
Line 1,395: | Line 1,444: | ||
|38% | |38% | ||
|} | |} | ||
+ | |||
| align="center" | | | align="center" | | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
Line 1,431: | Line 1,481: | ||
|35% | |35% | ||
|} | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 13 079 250 | ||
|- | |- | ||
− | + | |35% | |
− | + | |} | |
− | + | | align="center" | | |
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 22 952 610 | ||
+ | |- | ||
+ | |34% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 38 878 482 | ||
+ | |- | ||
+ | |34% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 63 821 826 | ||
+ | |- | ||
+ | |33% | ||
+ | |} | ||
+ | |- | ||
+ | |||
+ | |||
+ | |||
|'''18''' | |'''18''' | ||
| align="center" | | | align="center" | | ||
Line 1,458: | Line 1,532: | ||
| 22 363 | | 22 363 | ||
|- | |- | ||
− | | | + | |38% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,476: | Line 1,550: | ||
| 598 417 | | 598 417 | ||
|- | |- | ||
− | | | + | |35% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,482: | Line 1,556: | ||
| 1 462 563 | | 1 462 563 | ||
|- | |- | ||
− | | | + | |34% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,501: | Line 1,575: | ||
|- | |- | ||
|31% | |31% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 27 298 155 | ||
+ | |- | ||
+ | |30% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 50 250 765 | ||
+ | |- | ||
+ | |29% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 89 129 247 | ||
+ | |- | ||
+ | |29% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 152 951 073 | ||
+ | |- | ||
+ | |28% | ||
|} | |} | ||
|- | |- | ||
Line 1,559: | Line 1,657: | ||
| 4 780 008 | | 4 780 008 | ||
|- | |- | ||
− | | | + | |30% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,573: | Line 1,671: | ||
|29% | |29% | ||
|} | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 41 517 060 | ||
|- | |- | ||
− | + | |28% | |
− | + | |} | |
− | + | | align="center" | | |
− | |'''20''' | + | {| border="2" style="background:#ABCDEF;" |
+ | | 77 548 920 | ||
+ | |- | ||
+ | |28% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 139 380 012 | ||
+ | |- | ||
+ | |27% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 242 080 320 | ||
+ | |- | ||
+ | |28% | ||
+ | |} | ||
+ | |- | ||
+ | |||
+ | |||
+ | |||
+ | |'''20''' | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
Line 1,606: | Line 1,728: | ||
| 134 245 | | 134 245 | ||
|- | |- | ||
− | | | + | |31% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,618: | Line 1,740: | ||
| 1 256 465 | | 1 256 465 | ||
|- | |- | ||
− | | | + | |30% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 1,636: | Line 1,758: | ||
| 18 474 633 | | 18 474 633 | ||
|- | |- | ||
− | | | + | |27% |
|} | |} | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
| 39 753 273 | | 39 753 273 | ||
+ | |- | ||
+ | |26% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 81 270 333 | ||
|- | |- | ||
|25% | |25% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 158 819 253 | ||
+ | |- | ||
+ | |24% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 298 199 265 | ||
+ | |- | ||
+ | |24% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 540 279 585 | ||
+ | |- | ||
+ | |24% | ||
|} | |} | ||
Latest revision as of 09:24, 24 November 2019
Table of the orders of the largest known circulant graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
3 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 |
4 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 | 265 | 313 | 365 | 421 | 481 | 545 |
5 | 16 | 36 | 64 | 100 | 144 | 196 | 256 | 324 | 400 | 484 | 576 | 676 | 784 | 900 | 1 024 |
6 | 21 | 55 | 117 | 203 | 333 | 515 | 737 | 1 027 | 1 393 | 1 815 | 2 329 | 2 943 | 3 629 | 4 431 | 5 357 |
7 | 26 | 76 | 160 | 308 | 536 | 828 | 1 232 | 1 764 | 2 392 | 3 180 | 4 144 | 5 236 | 6 536 | 8 060 | 9 744 |
8 | 35 | 104 | 248 | 528 | 984 | 1 712 | 2 768 | 4 280 | 6 320 | 9 048 | 12 552 | 17 024 | 22 568 | 29 408 | 37 664 |
9 | 42 | 130 | 320 | 700 | 1 416 | 2 548 | 4 304 | 6 804 | 10 320 | 15 004 | 21 192 | 29 068 | 39 032 | 51 300 | 66 336 |
10 | 51 | 177 | 457 | 1 099 | 2 380 | 4 551 | 8 288 | 14 099 | 22 805 | 35 568 | 53 025 | 77 572 | 110 045 | 152 671 | 208 052 |
11 | 56 | 210 | 576 | 1 428 | 3 200 | 6 652 | 12 416 | 21 572 | 35 880 | 56 700 | 87 248 | 128 852 | 184 424 | 259 260 | 355 576 |
12 | 67 | 275 | 819 | 2 120 | 5 044 | 10 777 | 21 384 | 39 996 | 69 965 | 117 712 | 190 392 | 295 840 | 448 920 | 662 680 | 952 985 |
13 | 80 | 312 | 970 | 2 676 | 6 256 | 14 740 | 30 760 | 57 396 | 106 120 | 182 980 | 295 840 | 476 100 | 732 744 | 1 081 860 | 1 593 064 |
14 | 90 | 381 | 1 229 | 3 695 | 9 800 | 23 304 | 49 757 | 103 380 | 196 689 | 350 700 | 593 989 | 996 240 | 1 603 216 | 2 486 227 | 3 843 540 |
15 | 96 | 448 | 1 420 | 4 292 | 12 232 | 32 092 | 68 944 | 142 516 | 276 928 | 514 580 | 908 480 | 1 550 228 | 2 566 712 | 4 013 468 | 6 155 056 |
16 | 112 | 518 | 1 788 | 5 847 | 17 733 | 45 900 | 107 748 | 232 245 | 479 255 | 924 420 | 1 702 428 | 2 982 623 | 5 209 347 | 8 476 048 | 13 588 848 |
17 | 130 | 570 | 1 954 | 6 468 | 20 360 | 57 684 | 136 512 | 321 780 | 659 464 | 1 350 820 | 2 479 104 | 4 557 364 | 7 729 000 | 13 275 108 | 21 252 864 |
18 | 138 | 655 | 2 645 | 8 425 | 27 273 | 80 940 | 208 872 | 492 776 | 1 078 280 | 2 202 955 | 4 388 640 | 8 068 383 | 14 718 984 | 25 609 955 | 43 068 508 |
19 | 156 | 722 | 2 696 | 9 652 | 31 440 | 99 420 | 258 040 | 652 004 | 1 416 256 | 3 101 860 | 6 100 520 | 11 797 684 | 21 659 528 | 38 328 220 | 66 601 304 |
20 | 171 | 815 | 3 175 | 12 396 | 42 252 | 132 720 | 371 400 | 930 184 | 2 232 648 | 4 947 880 | 10 238 745 | 20 452 920 | 38 155 632 | 70 612 644 | 126 967 008 |
The following table is the key to the colors in the table presented above:
Color | Details |
* | Numbers in bold indicate graphs known to be optimal. |
* | Optimal graphs. |
* | Optimal graphs found by E. Monakhova. |
* | Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík. |
* | Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova. |
* | Graphs found by B. McKay. |
* | Graphs found by R. Lewis. |
* | Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by D. Bevan, G. Erskine and R. Lewis. |
* | Graphs found by G. Erskine. |
* | Graphs found by O. Monakhov and E. Monakhova. |
Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||||||||||||||||||||||||
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References
- D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
- R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
- R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
- E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
- E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
- E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal