Difference between revisions of "Tables and Results"
From Combinatorics Wiki
(→Table 2: bounds for trivalent cages) |
(→Table 2: bounds for trivalent cages) |
||
Line 55: | Line 55: | ||
|style="background-color: #cccccc;"| 22 ||style="background-color: #cccccc;"| 4096 || 16206|| || Biggs-Hoare, S(73) | |style="background-color: #cccccc;"| 22 ||style="background-color: #cccccc;"| 4096 || 16206|| || Biggs-Hoare, S(73) | ||
|- | |- | ||
− | |style="background-color: #cccccc;"| 23 ||style="background-color: #cccccc;"| 6144 || | + | |style="background-color: #cccccc;"| 23 ||style="background-color: #cccccc;"| 6144 ||35446 || ||Erskine-Tuite |
|- | |- | ||
− | |style="background-color: #cccccc;"| 24 ||style="background-color: #cccccc;"| 8192 || | + | |style="background-color: #cccccc;"| 24 ||style="background-color: #cccccc;"| 8192 || 35640 || ||Erskine-Tuite |
|- | |- | ||
|style="background-color: #cccccc;"| 25 ||style="background-color: #cccccc;"| 12288 ||108906|| || Exoo | |style="background-color: #cccccc;"| 25 ||style="background-color: #cccccc;"| 12288 ||108906|| || Exoo | ||
Line 65: | Line 65: | ||
|style="background-color: #cccccc;"| 27 ||style="background-color: #cccccc;"| 24576 ||285852 || ||Bray-Parker-Rowley | |style="background-color: #cccccc;"| 27 ||style="background-color: #cccccc;"| 24576 ||285852 || ||Bray-Parker-Rowley | ||
|- | |- | ||
− | |style="background-color: #cccccc;"| 28 ||style="background-color: #cccccc;"| 32768 || | + | |style="background-color: #cccccc;"| 28 ||style="background-color: #cccccc;"| 32768 ||368640|| || Erskine-Tuite |
|- | |- | ||
− | |style="background-color: #cccccc;"| 29 ||style="background-color: #cccccc;"| 49152 || | + | |style="background-color: #cccccc;"| 29 ||style="background-color: #cccccc;"| 49152 ||805746|| || Erskine-Tuite |
|- | |- | ||
− | |style="background-color: #cccccc;"| 30 ||style="background-color: #cccccc;"| 65536 || | + | |style="background-color: #cccccc;"| 30 ||style="background-color: #cccccc;"| 65536 ||806736|| || Erskine-Tuite |
|- | |- | ||
− | |style="background-color: #cccccc;"| 31 ||style="background-color: #cccccc;"| 98304 || | + | |style="background-color: #cccccc;"| 31 ||style="background-color: #cccccc;"| 98304 ||1440338|| ||Erskine-Tuite |
|- | |- | ||
− | |style="background-color: #cccccc;"| 32 ||style="background-color: #cccccc;"| 131072 || | + | |style="background-color: #cccccc;"| 32 ||style="background-color: #cccccc;"| 131072 ||1441440|| || Erskine-Tuite |
|} | |} | ||
</center> | </center> |
Latest revision as of 15:19, 21 January 2022
Contents
Trivalent cages
Table 1: known trivalent cages
g | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
n(3,g) | 10 | 14 | 24 | 30 | 58 | 70 | 112 | 126 |
number of cages | 1 | 1 | 1 | 1 | 18 | 3 | 1 | 1 |
Table 2: bounds for trivalent cages
Optimal graphs are marked in bold
Girth g | Lower bound | Upper bound | Number of cages | Author or description |
5 | 10 | 10 | 1 | Petersen |
6 | 14 | 14 | 1 | Heawood |
7 | 24 | 24 | 1 | McGee |
8 | 30 | 30 | 1 | Tutte |
9 | 58 | 58 | 18 | Brinkmann-McKay-Saager |
10 | 70 | 70 | 3 | O’Keefe-Wong |
11 | 112 | 112 | 1 | McKay-Myrvold; Balaban |
12 | 126 | 126 | 1 | Benson |
13 | 202 | 272 | McKay-Myrvold; Hoare | |
14 | 258 | 384 | McKay; Exoo | |
15 | 384 | 620 | Biggs | |
16 | 512 | 960 | Exoo | |
17 | 768 | 2176 | Exoo | |
18 | 1024 | 2560 | Exoo | |
19 | 1536 | 4324 | Hoare, H(47) | |
20 | 2048 | 5376 | Exoo | |
21 | 3072 | 16028 | Exoo | |
22 | 4096 | 16206 | Biggs-Hoare, S(73) | |
23 | 6144 | 35446 | Erskine-Tuite | |
24 | 8192 | 35640 | Erskine-Tuite | |
25 | 12288 | 108906 | Exoo | |
26 | 16384 | 109200 | Bray-Parker-Rowley | |
27 | 24576 | 285852 | Bray-Parker-Rowley | |
28 | 32768 | 368640 | Erskine-Tuite | |
29 | 49152 | 805746 | Erskine-Tuite | |
30 | 65536 | 806736 | Erskine-Tuite | |
31 | 98304 | 1440338 | Erskine-Tuite | |
32 | 131072 | 1441440 | Erskine-Tuite |
Cages of girth 5 and 6
Optimal graphs are marked in bold.
Table 1: known cages of Girth 5
k | 3 | 4 | 5 | 6 | 7 |
n(k,5) | 10 | 19 | 30 | 40 | 50 |
number of cages | 1 | 1 | 4 | 1 | 1 |
Table 2: bounds for cages of girth 5
Degree k | Lower bound | Upper bound | Author or description |
3 | 10 | 10 | Petersen |
4 | 19 | 19 | Robertson |
5 | 30 | 30 | Robertson-Wegner-Wong |
6 | 40 | 40 | Wong |
7 | 50 | 50 | Hoffman-Singleton |
8 | 67 | 80 | Royle |
9 | 86 | 96 | Jørgensen |
10 | 103 | 126 | Exoo |
11 | 124 | 156 | Jørgensen |
12 | 147 | 203 | Exoo |
13 | 174 | 240 | Exoo |
14 | 199 | 288 | Jørgensen |
15 | 230 | 312 | Jørgensen |
16 | 259 | 336 | Jørgensen |
17 | 294 | 448 | Schwenk |
18 | 327 | 480 | Schwenk |
19 | 364 | 512 | Schwenk |
20 | 403 | 576 | Jørgensen |
Table 3: bounds for cages of girth 6
Degree k | Lower bound | Upper bound | Author or description |
3 | 14 | 14 | Projective Plane |
4 | 26 | 26 | Projective Plane |
5 | 42 | 42 | Projective Plane |
6 | 62 | 62 | Projective Plane |
7 | 90 | 90 | O’Keefe-Wong |
8 | 114 | 114 | Projective Plane |
9 | 146 | 146 | Projective Plane |
10 | 182 | 182 | Projective Plane |
11 | 224 | 240 | Wong |
12 | 266 | 266 | Projective Plane |
13 | 314 | 336 | Abreu-Funk-Labbate-Napolitano |
14 | 366 | 366 | Projective Plane |
15 | 422 | 462 | Abreu-Funk-Labbate-Napolitano |
16 | 482 | 504 | Abreu-Funk-Labbate-Napolitano |
17 | 546 | 546 | Projective Plane |
18 | 614 | 614 | Projective Plane |
19 | 686 | 720 | Abreu-Funk-Labbate-Napolitano |
20 | 762 | 762 | Projective Plane |