Difference between revisions of "Girth greater than 4"
From Combinatorics Wiki
CW>KimMarshall (New page: ===''ex(n;4)''=== P.Erdös <ref>P. Erdös, Some recent progress on the extremal problems in graph theory, ''Congr. Numer.'' '''14''' (1975) 3--14</ref> conjectured that ''ex(n;4...) |
m (1 revision imported) |
(No difference)
|
Latest revision as of 14:39, 3 January 2019
ex(n;4)
P.Erdös <ref>P. Erdös, Some recent progress on the extremal problems in graph theory, Congr. Numer. 14 (1975) 3--14</ref> conjectured that ex(n;4)=(1/2 + o(1))3/2 n3/2.
Garnick et al. demonstrated that extremal graphs include:
- Stars K1,n-1 and Paths Pn for n ≤ 4,
- Moore graphs:
- EX(5;4)={C5} the cycle;
- ex(10;4)= 15 is attained by the Petersen graph ;
- ex(50;4)=175 is attained by the Hoffman-Singleton graph;
- ex(3250;4) is attained by the Moore graph with girth 5 and degree 57 if it exists.
- C6 is an element of EX(6;4).
- polarity graphs.
Let G be an extremal graph of order n. Then
- the diameter of G is at most 3;
- if d(x)=δ(G)=1, then the graph G-{x} has diameter at most 2.
The following table lists the known values and constructive lower bounds for ex(n;4). If the value is known then it is shown in bold text.
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 12 |
10 | 15 | 16 | 18 | 21 | 23 | 26 | 28 | 31 | 34 | 38 |
20 | 41 | 44 | 47 | 50 | 54 | 57 | 61 | 65 | 68 | 72 |
30 | 76 | 80 | 85 | 87 | 90 | 94 | 99 | 104 | 109 | 114 |
40 | 120 | 124 | 129 | 134 | 139 | 144 | 150 | 156 | 162 | 168 |
50 | 175 | 176 | 178 | 181 | 185 | 188 | 192 | 195 | 199 | 203 |
60 | 207 | 212 | 216 | 221 | 226 | 231 | 235 | 240 | 245 | 250 |
70 | 255 | 260 | 265 | 270 | 275 | 280 | 285 | 291 | 296 | 301 |
80 | 306 | 311 | 317 | 323 | 329 | 334 | 340 | 346 | 352 | 357 |
90 | 363 | 368 | 374 | 379 | 385 | 391 | 398 | 404 | 410 | 416 |
100 | 422 | 428 | 434 | 440 | 446 | 452 | 458 | 464 | 470 | 476 |
110 | 483 | 489 | 495 | 501 | 508 | 514 | 520 | 526 | 532 | 538 |
120 | 544 | 551 | 558 | 565 | 571 | 578 | 584 | 590 | 596 | 603 |
130 | 610 | 617 | 623 | 630 | 637 | 644 | 651 | 658 | 665 | 672 |
140 | 679 | 686 | 693 | 700 | 707 | 714 | 721 | 728 | 735 | 742 |
150 | 749 | 756 | 763 | 770 | 777 | 784 | 791 | 798 | 805 | 812 |
160 | 819 | 826 | 834 | 841 | 849 | 856 | 863 | 871 | 878 | 886 |
170 | 893 | 901 | 909 | 917 | 925 | 933 | 941 | 948 | 956 | 963 |
180 | 971 | 979 | 986 | 994 | 1001 | 1009 | 1017 | 1025 | 1033 | 1041 |
190 | 1049 | 1057 | 1065 | 1073 | 1081 | 1089 | 1097 | 1105 | 1113 | 1121 |
200 | 1129 |
The following table is the key to the colors in the table presented above:
Color | References |
* | Garnick, Kwong and Lazebnik<ref>D. K. Garnick and Y. H. H. Kwong, F. Lazebnik, Extremal graphs without three-cycles or four-cycles, J. Graph Theory, 17 (1993), 633--645</ref>. |
* | Garnick and Nieuwejaar<ref>D. K. Garnick and N.A. Nieuwejaar, Non-isomorphic extremal graphs without three-cycles or four-cycles, JCMCC, 12 (1992), 33--56</ref>. |