CW>Grahame.erskine |
|
(No difference)
|
Revision as of 14:39, 3 January 2019
Table of the orders of the largest known circulant graphs
[math]d[/math]\[math]k[/math] |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10
|
3 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40
|
4 |
13 |
25 |
41 |
61 |
85 |
113 |
145 |
181 |
221
|
5 |
16 |
36 |
64 |
100 |
144 |
196 |
256 |
324 |
400
|
6 |
21 |
55 |
117 |
203 |
333 |
515 |
737 |
1 027 |
1 393
|
7 |
26 |
76 |
160 |
308 |
536 |
828 |
1 232 |
1 764 |
2 392
|
8 |
35 |
104 |
248 |
528 |
984 |
1 712 |
2 768 |
4 280 |
6 320
|
9 |
42 |
130 |
320 |
700 |
1 416 |
2 548 |
4 304 |
6 804 |
10 320
|
10 |
51 |
177 |
457 |
1 099 |
2 380 |
4 551 |
8 288 |
14 099 |
22 805
|
11 |
56 |
210 |
576 |
1 428 |
3 200 |
6 652 |
12 416 |
21 572 |
35 880
|
12 |
67 |
275 |
819 |
2 040 |
4 283 |
8 828 |
16 439 |
29 308 |
51 154
|
13 |
80 |
312 |
970 |
2 548 |
5 598 |
12 176 |
22 198 |
40 720 |
72 608
|
14 |
90 |
381 |
1 229 |
3 244 |
7 815 |
17 389 |
35 929 |
71 748 |
126 109
|
15 |
96 |
448 |
1 420 |
3 980 |
9 860 |
22 584 |
48 408 |
93 804 |
177 302
|
16 |
112 |
518 |
1 717 |
5 024 |
13 380 |
32 731 |
71 731 |
148 385 |
298 105
|
The following table is the key to the colors in the table presented above:
Color |
Details
|
* |
Numbers in bold indicate graphs known to be optimal.
|
* |
Optimal graphs.
|
* |
Optimal graphs found by E. Monakhova.
|
* |
Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík.
|
* |
Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova.
|
* |
Graphs found by B. McKay.
|
* |
Graphs found by R. Lewis.
|
* |
Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
|
* |
Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
|
* |
Graphs found by D. Bevan, G. Erskine and R. Lewis.
|
* |
Graphs found by O. Monakhov and E. Monakhova.
|
Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs
[math]d[/math]\[math]k[/math] |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10
|
3
|
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
|
|
References
- D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
- R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
- R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
- E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
- E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
- E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal