Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"
From Combinatorics Wiki
Line 626: | Line 626: | ||
|3 653 | |3 653 | ||
|- | |- | ||
− | | | + | |58% |
|} | |} | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
− | | | + | |8 989 |
|- | |- | ||
− | | | + | |56% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 638: | Line 638: | ||
|19 825 | |19 825 | ||
|- | |- | ||
− | | | + | |54% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 644: | Line 644: | ||
|40 081 | |40 081 | ||
|- | |- | ||
− | | | + | |53% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 650: | Line 650: | ||
|75 517 | |75 517 | ||
|- | |- | ||
− | | | + | |53% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 656: | Line 656: | ||
|134 245 | |134 245 | ||
|- | |- | ||
− | | | + | |52% |
|} | |} | ||
|- | |- | ||
Line 685: | Line 685: | ||
|4 942 | |4 942 | ||
|- | |- | ||
− | | | + | |54% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 691: | Line 691: | ||
|12 642 | |12 642 | ||
|- | |- | ||
− | | | + | |49% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 697: | Line 697: | ||
|28 814 | |28 814 | ||
|- | |- | ||
− | | | + | |51% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 703: | Line 703: | ||
|59 906 | |59 906 | ||
|- | |- | ||
− | | | + | |51% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 709: | Line 709: | ||
|115 598 | |115 598 | ||
|- | |- | ||
− | | | + | |50% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 715: | Line 715: | ||
|209 762 | |209 762 | ||
|- | |- | ||
− | | | + | |51% |
|} | |} | ||
|- | |- | ||
Line 744: | Line 744: | ||
| 7 183 | | 7 183 | ||
|- | |- | ||
− | | | + | |51% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 750: | Line 750: | ||
| 19 825 | | 19 825 | ||
|- | |- | ||
− | | | + | |49% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 756: | Line 756: | ||
| 48 639 | | 48 639 | ||
|- | |- | ||
− | | | + | |48% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 762: | Line 762: | ||
| 108 545 | | 108 545 | ||
|- | |- | ||
− | | | + | |46% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 768: | Line 768: | ||
| 224 143 | | 224 143 | ||
|- | |- | ||
− | | | + | |46% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 774: | Line 774: | ||
| 433 905 | | 433 905 | ||
|- | |- | ||
− | | | + | |45% |
|} | |} | ||
|- | |- | ||
Line 803: | Line 803: | ||
| 9 424 | | 9 424 | ||
|- | |- | ||
− | | | + | |46% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 809: | Line 809: | ||
| 27 008 | | 27 008 | ||
|- | |- | ||
− | | | + | |45% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 815: | Line 815: | ||
| 68 464 | | 68 464 | ||
|- | |- | ||
− | | | + | |47% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 821: | Line 821: | ||
| 157 184 | | 157 184 | ||
|- | |- | ||
− | | | + | |44% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 827: | Line 827: | ||
| 332 688 | | 332 688 | ||
|- | |- | ||
− | | | + | |43% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 833: | Line 833: | ||
| 658 048 | | 658 048 | ||
|- | |- | ||
− | | | + | |42% |
|} | |} | ||
|- | |- | ||
Line 854: | Line 854: | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
− | | | + | | 3 649 |
|- | |- | ||
− | | | + | |49% |
|} | |} | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
− | | | + | | 13 073 |
|- | |- | ||
− | | | + | |45% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 868: | Line 868: | ||
| 40 081 | | 40 081 | ||
|- | |- | ||
− | | | + | |44% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 874: | Line 874: | ||
| 108545 | | 108545 | ||
|- | |- | ||
− | | | + | |41% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 880: | Line 880: | ||
| 265 729 | | 265 729 | ||
|- | |- | ||
− | | | + | |41% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 886: | Line 886: | ||
| 598 417 | | 598 417 | ||
|- | |- | ||
− | | | + | |39% |
|} | |} | ||
| align="center" | | | align="center" | | ||
Line 892: | Line 892: | ||
| 1 256 465 | | 1 256 465 | ||
|- | |- | ||
− | | | + | |38% |
|} | |} | ||
|} | |} |
Revision as of 13:20, 7 March 2019
Table of the orders of the largest known circulant graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
3 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
4 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 |
5 | 16 | 36 | 64 | 100 | 144 | 196 | 256 | 324 | 400 |
6 | 21 | 55 | 117 | 203 | 333 | 515 | 737 | 1 027 | 1 393 |
7 | 26 | 76 | 160 | 308 | 536 | 828 | 1 232 | 1 764 | 2 392 |
8 | 35 | 104 | 248 | 528 | 984 | 1 712 | 2 768 | 4 280 | 6 320 |
9 | 42 | 130 | 320 | 700 | 1 416 | 2 548 | 4 304 | 6 804 | 10 320 |
10 | 51 | 177 | 457 | 1 099 | 2 380 | 4 551 | 8 288 | 14 099 | 22 805 |
11 | 56 | 210 | 576 | 1 428 | 3 200 | 6 652 | 12 416 | 21 572 | 35 880 |
12 | 67 | 275 | 819 | 2 120 | 5 044 | 10 777 | 21 384 | 39 996 | 69 965 |
13 | 80 | 312 | 970 | 2 676 | 6 256 | 14 740 | 30 760 | 57 396 | 106 120 |
14 | 90 | 381 | 1 229 | 3 695 | 9 800 | 23 304 | 49 757 | 103 380 | 196 689 |
15 | 96 | 448 | 1 420 | 4 292 | 12 232 | 32 092 | 68 944 | 142 516 | 276 928 |
16 | 112 | 518 | 1 788 | 5 847 | 17 733 | 44 328 | 107 748 | 321 780 | 659 464 |
The following table is the key to the colors in the table presented above:
Color | Details |
* | Numbers in bold indicate graphs known to be optimal. |
* | Optimal graphs. |
* | Optimal graphs found by E. Monakhova. |
* | Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík. |
* | Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova. |
* | Graphs found by B. McKay. |
* | Graphs found by R. Lewis. |
* | Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by D. Bevan, G. Erskine and R. Lewis. |
* | Graphs found by O. Monakhov and E. Monakhova. |
Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||||||||||||||
3 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
4 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
5 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
6 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
7 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
8 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
9 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
10 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
11 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
12 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
13 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
14 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
15 |
|
|
|
|
|
|
|
|
| ||||||||||||||||||
16 |
|
|
|
|
|
|
|
|
|
References
- D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
- R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
- R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
- E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
- E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
- E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal