Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"

From Combinatorics Wiki

Line 626: Line 626:
 
|3 653
 
|3 653
 
|-
 
|-
|56%
+
|58%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
 
{| border="2" style="background:#ABCDEF;"  
 
{| border="2" style="background:#ABCDEF;"  
|3 910
+
|8 989
 
|-
 
|-
|48%
+
|56%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 638: Line 638:
 
|19 825
 
|19 825
 
|-
 
|-
|45%
+
|54%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 644: Line 644:
 
|40 081
 
|40 081
 
|-
 
|-
|41%
+
|53%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 650: Line 650:
 
|75 517
 
|75 517
 
|-
 
|-
|39%
+
|53%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 656: Line 656:
 
|134 245
 
|134 245
 
|-
 
|-
|38%
+
|52%
 
|}
 
|}
 
|-
 
|-
Line 685: Line 685:
 
|4 942
 
|4 942
 
|-
 
|-
|52%
+
|54%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 691: Line 691:
 
|12 642
 
|12 642
 
|-
 
|-
|44%
+
|49%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 697: Line 697:
 
|28 814
 
|28 814
 
|-
 
|-
|42%
+
|51%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 703: Line 703:
 
|59 906
 
|59 906
 
|-
 
|-
|37%
+
|51%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 709: Line 709:
 
|115 598
 
|115 598
 
|-
 
|-
|35%
+
|50%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 715: Line 715:
 
|209 762
 
|209 762
 
|-
 
|-
|35%
+
|51%
 
|}
 
|}
 
|-
 
|-
Line 744: Line 744:
 
| 7 183
 
| 7 183
 
|-
 
|-
|45%
+
|51%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 750: Line 750:
 
| 19 825
 
| 19 825
 
|-
 
|-
|39%
+
|49%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 756: Line 756:
 
| 48 639
 
| 48 639
 
|-
 
|-
|36%
+
|48%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 762: Line 762:
 
| 108 545
 
| 108 545
 
|-
 
|-
|33%
+
|46%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 768: Line 768:
 
| 224 143
 
| 224 143
 
|-
 
|-
|32%
+
|46%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 774: Line 774:
 
| 433 905
 
| 433 905
 
|-
 
|-
|29%
+
|45%
 
|}
 
|}
 
|-
 
|-
Line 803: Line 803:
 
| 9 424
 
| 9 424
 
|-
 
|-
|42%
+
|46%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 809: Line 809:
 
| 27 008
 
| 27 008
 
|-
 
|-
|37%
+
|45%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 815: Line 815:
 
| 68 464
 
| 68 464
 
|-
 
|-
|33%
+
|47%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 821: Line 821:
 
| 157 184
 
| 157 184
 
|-
 
|-
|31%
+
|44%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 827: Line 827:
 
| 332 688
 
| 332 688
 
|-
 
|-
|28%
+
|43%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 833: Line 833:
 
| 658 048
 
| 658 048
 
|-
 
|-
|27%
+
|42%
 
|}
 
|}
 
|-
 
|-
Line 854: Line 854:
 
| align="center" |
 
| align="center" |
 
{| border="2" style="background:#ABCDEF;"  
 
{| border="2" style="background:#ABCDEF;"  
| 1 520
+
| 3 649
 
|-
 
|-
|47%
+
|49%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
 
{| border="2" style="background:#ABCDEF;"  
 
{| border="2" style="background:#ABCDEF;"  
| 4 551
+
| 13 073
 
|-
 
|-
|38%
+
|45%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 868: Line 868:
 
| 40 081
 
| 40 081
 
|-
 
|-
|33%
+
|44%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 874: Line 874:
 
| 108545
 
| 108545
 
|-
 
|-
|30%
+
|41%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 880: Line 880:
 
| 265 729
 
| 265 729
 
|-
 
|-
|27%
+
|41%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 886: Line 886:
 
| 598 417
 
| 598 417
 
|-
 
|-
|25%
+
|39%
 
|}
 
|}
 
| align="center" |
 
| align="center" |
Line 892: Line 892:
 
| 1 256 465
 
| 1 256 465
 
|-
 
|-
|24%
+
|38%
 
|}
 
|}
 
|}
 
|}

Revision as of 13:20, 7 March 2019

Table of the orders of the largest known circulant graphs

[math]d[/math]\[math]k[/math] 2 3 4 5 6 7 8 9 10
3 8 12 16 20 24 28 32 36 40
4 13 25 41 61 85 113 145 181 221
5 16 36 64 100 144 196 256 324 400
6 21 55 117 203 333 515 737 1 027 1 393
7 26 76 160 308 536 828 1 232 1 764 2 392
8 35 104 248 528 984 1 712 2 768 4 280 6 320
9 42 130 320 700 1 416 2 548 4 304 6 804 10 320
10 51 177 457 1 099 2 380 4 551 8 288 14 099 22 805
11 56 210 576 1 428 3 200 6 652 12 416 21 572 35 880
12 67 275 819 2 120 5 044 10 777 21 384 39 996 69 965
13 80 312 970 2 676 6 256 14 740 30 760 57 396 106 120
14 90 381 1 229 3 695 9 800 23 304 49 757 103 380 196 689
15 96 448 1 420 4 292 12 232 32 092 68 944 142 516 276 928
16 112 518 1 788 5 847 17 733 44 328 107 748 321 780 659 464

The following table is the key to the colors in the table presented above:

Color Details
* Numbers in bold indicate graphs known to be optimal.
* Optimal graphs.
* Optimal graphs found by E. Monakhova.
* Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík.
* Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova.
* Graphs found by B. McKay.
* Graphs found by R. Lewis.
* Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
* Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
* Graphs found by D. Bevan, G. Erskine and R. Lewis.
* Graphs found by O. Monakhov and E. Monakhova.

Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs

[math]d[/math]\[math]k[/math] 2 3 4 5 6 7 8 9 10
3
8
100%
12
100%
16
100%
20
100%
24
100%
28
100%
32
100%
36
100%
40
100%
4
13
100%
25
100%
41
100%
61
100%
85
100%
113
100%
145
100%
181
100%
221
100%
5
16
100%
36
100%
64
100%
100
100%
144
100%
196
100%
256
100%
324
100%
400
100%
6
21
100%
55
100%
117
100%
203
100%
333
100%
515
100%
737
100%
1 027
100%
1 393
100%
7
26
100%
76
100%
160
100%
308
100%
536
100%
828
100%
1 232
100%
1 764
100%
2 392
100%
8
35
100%
104
100%
248
100%
528
100%
984
100%
1 712
100%
3 649
76%
5 641
76%
8 361
76%
9
42
100%
130
100%
320
100%
700
100%
1 416
100%
3 530
72%
5 890
73%
9 290
73%
14 002
74%
10
51
100%
177
100%
681
67%
1 683
65%
3 653
65%
7 183
63%
13 073
63%
22 363
63%
36 365
63%
11
56
100%
210
100%
912
63%
2 364
60%
5 336
60%
10 836
61%
20 256
61%
35 436
61%
58 728
61%
12
67
100%
275
100%
1 289
64%
3 653
58%
8 989
56%
19 825
54%
40 081
53%
75 517
53%
134 245
52%
13
80
100%
312
100%
1 666
58%
4 942
54%
12 642
49%
28 814
51%
59 906
51%
115 598
50%
209 762
51%
14
90
100%
381
100%
2 241
55%
7 183
51%
19 825
49%
48 639
48%
108 545
46%
224 143
46%
433 905
45%
15
96
100%
448
100%
2 816
50%
9 424
46%
27 008
45%
68 464
47%
157 184
44%
332 688
43%
658 048
42%
16
112
100%
833
62%
3 649
49%
13 073
45%
40 081
44%
108545
41%
265 729
41%
598 417
39%
1 256 465
38%

References

  • D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
  • R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
  • R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
  • E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
  • E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
  • E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal