Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"
From Combinatorics Wiki
Line 72: | Line 72: | ||
<center> | <center> | ||
{| border="1" | {| border="1" | ||
− | | '''<math>d</math>\<math>k</math>'''|| '''2''' || '''3''' || '''4'''|| '''5''' || '''6''' || '''7''' || '''8''' || '''9''' || '''10''' | + | | '''<math>d</math>\<math>k</math>'''|| '''2''' || '''3''' || '''4'''|| '''5''' || '''6''' || '''7''' || '''8''' || '''9''' || '''10''' || '''11''' || '''12''' |
|- | |- | ||
|'''3''' | |'''3''' | ||
Line 120: | Line 120: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|36 | |36 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |44 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |48 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 185: | Line 197: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|221 | |221 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |265 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |313 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 244: | Line 268: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|400 | |400 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |484 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |576 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 303: | Line 339: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|1 393 | |1 393 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |1 815 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |2 329 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 364: | Line 412: | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |3 608 | ||
+ | |- | ||
+ | |88% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |4 672 | ||
+ | |- | ||
+ | |89% | ||
|} | |} | ||
|- | |- | ||
Line 423: | Line 483: | ||
|- | |- | ||
|76% | |76% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |11 969 | ||
+ | |- | ||
+ | |76% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |16 641 | ||
+ | |- | ||
+ | |75% | ||
|} | |} | ||
|- | |- | ||
Line 480: | Line 552: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|14 002 | |14 002 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |20 330 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |28 610 | ||
|- | |- | ||
|74% | |74% | ||
Line 541: | Line 625: | ||
|- | |- | ||
|63% | |63% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |56 695 | ||
+ | |- | ||
+ | |63% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |85 305 | ||
+ | |- | ||
+ | |62% | ||
|} | |} | ||
|- | |- | ||
Line 598: | Line 694: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|58 728 | |58 728 | ||
+ | |- | ||
+ | |61% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |93 060 | ||
+ | |- | ||
+ | |61% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |142 000 | ||
|- | |- | ||
|61% | |61% | ||
Line 657: | Line 765: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|134 245 | |134 245 | ||
+ | |- | ||
+ | |52% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |227 305 | ||
+ | |- | ||
+ | |52% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |369 305 | ||
|- | |- | ||
|52% | |52% | ||
Line 718: | Line 838: | ||
|- | |- | ||
|51% | |51% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |361 550 | ||
+ | |- | ||
+ | |51% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |596610 | ||
+ | |- | ||
+ | |50% | ||
|} | |} | ||
|- | |- | ||
Line 777: | Line 909: | ||
|- | |- | ||
|45% | |45% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 795 455 | ||
+ | |- | ||
+ | |44% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 1 392 065 | ||
+ | |- | ||
+ | |43% | ||
|} | |} | ||
|- | |- | ||
Line 834: | Line 978: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
| 658 048 | | 658 048 | ||
+ | |- | ||
+ | |42% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 1 229 360 | ||
+ | |- | ||
+ | |42% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 2 187 520 | ||
|- | |- | ||
|42% | |42% | ||
Line 896: | Line 1,052: | ||
|38% | |38% | ||
|} | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 2 485 825 | ||
+ | |- | ||
+ | |37% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | | 4 673 345 | ||
+ | |- | ||
+ | |36% | ||
+ | |} | ||
+ | |||
|} | |} | ||
</center> | </center> |
Revision as of 19:03, 8 March 2019
Table of the orders of the largest known circulant graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
3 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
4 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 | 265 | 313 |
5 | 16 | 36 | 64 | 100 | 144 | 196 | 256 | 324 | 400 | 484 | 576 |
6 | 21 | 55 | 117 | 203 | 333 | 515 | 737 | 1 027 | 1 393 | 1 815 | 2 329 |
7 | 26 | 76 | 160 | 308 | 536 | 828 | 1 232 | 1 764 | 2 392 | 3 180 | 4 144 |
8 | 35 | 104 | 248 | 528 | 984 | 1 712 | 2 768 | 4 280 | 6 320 | 9 048 | 12 552 |
9 | 42 | 130 | 320 | 700 | 1 416 | 2 548 | 4 304 | 6 804 | 10 320 | 15 004 | 21 192 |
10 | 51 | 177 | 457 | 1 099 | 2 380 | 4 551 | 8 288 | 14 099 | 22 805 | 35 568 | 53 025 |
11 | 56 | 210 | 576 | 1 428 | 3 200 | 6 652 | 12 416 | 21 572 | 35 880 | 56 700 | 87 248 |
12 | 67 | 275 | 819 | 2 120 | 5 044 | 10 777 | 21 384 | 39 996 | 69 965 | 117 712 | 190 392 |
13 | 80 | 312 | 970 | 2 676 | 6 256 | 14 740 | 30 760 | 57 396 | 106 120 | 182 980 | 295 840 |
14 | 90 | 381 | 1 229 | 3 695 | 9 800 | 23 304 | 49 757 | 103 380 | 196 689 | 350 700 | 593 989 |
15 | 96 | 448 | 1 420 | 4 292 | 12 232 | 32 092 | 68 944 | 142 516 | 276 928 | 514 580 | 908 480 |
16 | 112 | 518 | 1 788 | 5 847 | 17 733 | 44 328 | 107 748 | 232 245 | 479 255 | 924 420 | 1 702 428 |
17 | 130 | 6 468 | 20 360 | 57 684 | 136 512 | 321 780 | 659 464 | 1 350 820 | 2 479 104 |
The following table is the key to the colors in the table presented above:
Color | Details |
* | Numbers in bold indicate graphs known to be optimal. |
* | Optimal graphs. |
* | Optimal graphs found by E. Monakhova. |
* | Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík. |
* | Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova. |
* | Graphs found by B. McKay. |
* | Graphs found by R. Lewis. |
* | Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by D. Bevan, G. Erskine and R. Lewis. |
* | Graphs found by O. Monakhov and E. Monakhova. |
Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||||||||||||||||||||
3 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
4 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
5 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
6 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
7 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
8 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
9 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
10 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
11 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
12 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
13 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
14 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
15 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
16 |
|
|
|
|
|
|
|
|
|
|
|
References
- D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
- R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
- R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
- E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
- E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
- E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal