Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"

From Combinatorics Wiki

(Table of the orders of the largest known circulant graphs)
(Table of the orders of the largest known circulant graphs)
Line 33: Line 33:
 
| '''16''' ||style="background-color: #81BEF7;" | '''112''' ||style="background-color: orange;" | 518 ||style="background-color: #66ff66;" | 1 788 ||style="background-color: #66ff66;" | 5 847 ||style="background-color: #66ff66;" | 17 733 ||style="background-color: #66ff66;" | 44 328 ||style="background-color: #66ff66;" | 107 748  ||style="background-color: #66ff66;" | 232 245 ||style="background-color: #66ff66;" | 479 255 ||style="background-color: #66ff66;" | 924 420  ||style="background-color: #66ff66;" | 1 702 428  
 
| '''16''' ||style="background-color: #81BEF7;" | '''112''' ||style="background-color: orange;" | 518 ||style="background-color: #66ff66;" | 1 788 ||style="background-color: #66ff66;" | 5 847 ||style="background-color: #66ff66;" | 17 733 ||style="background-color: #66ff66;" | 44 328 ||style="background-color: #66ff66;" | 107 748  ||style="background-color: #66ff66;" | 232 245 ||style="background-color: #66ff66;" | 479 255 ||style="background-color: #66ff66;" | 924 420  ||style="background-color: #66ff66;" | 1 702 428  
 
|-
 
|-
| '''17''' ||style="background-color: orange;" | '''130''' ||style="background-color: gold;" | 544 ||style="background-color: gold;" | 1 874 ||style="background-color: #66ff66;" | 6 468 ||style="background-color: #66ff66;" | 20 360 ||style="background-color: #66ff66;" | 57 684 ||style="background-color: #66ff66;" | 136 512  ||style="background-color: #66ff66;" | 321 780 ||style="background-color: #66ff66;" | 659 464 ||style="background-color: #66ff66;" | 1 350 820  ||style="background-color: #66ff66;" | 2 479 104  
+
| '''17''' ||style="background-color: orange;" | '''130''' ||style="background-color: gold;" | 544 ||style="background-color: gold;" | 1 886 ||style="background-color: #66ff66;" | 6 468 ||style="background-color: #66ff66;" | 20 360 ||style="background-color: #66ff66;" | 57 684 ||style="background-color: #66ff66;" | 136 512  ||style="background-color: #66ff66;" | 321 780 ||style="background-color: #66ff66;" | 659 464 ||style="background-color: #66ff66;" | 1 350 820  ||style="background-color: #66ff66;" | 2 479 104  
 
|}
 
|}
 
</center>
 
</center>

Revision as of 10:08, 13 March 2019

Table of the orders of the largest known circulant graphs

[math]d[/math]\[math]k[/math] 2 3 4 5 6 7 8 9 10 11 12
3 8 12 16 20 24 28 32 36 40 44 48
4 13 25 41 61 85 113 145 181 221 265 313
5 16 36 64 100 144 196 256 324 400 484 576
6 21 55 117 203 333 515 737 1 027 1 393 1 815 2 329
7 26 76 160 308 536 828 1 232 1 764 2 392 3 180 4 144
8 35 104 248 528 984 1 712 2 768 4 280 6 320 9 048 12 552
9 42 130 320 700 1 416 2 548 4 304 6 804 10 320 15 004 21 192
10 51 177 457 1 099 2 380 4 551 8 288 14 099 22 805 35 568 53 025
11 56 210 576 1 428 3 200 6 652 12 416 21 572 35 880 56 700 87 248
12 67 275 819 2 120 5 044 10 777 21 384 39 996 69 965 117 712 190 392
13 80 312 970 2 676 6 256 14 740 30 760 57 396 106 120 182 980 295 840
14 90 381 1 229 3 695 9 800 23 304 49 757 103 380 196 689 350 700 593 989
15 96 448 1 420 4 292 12 232 32 092 68 944 142 516 276 928 514 580 908 480
16 112 518 1 788 5 847 17 733 44 328 107 748 232 245 479 255 924 420 1 702 428
17 130 544 1 886 6 468 20 360 57 684 136 512 321 780 659 464 1 350 820 2 479 104

The following table is the key to the colors in the table presented above:

Color Details
* Numbers in bold indicate graphs known to be optimal.
* Optimal graphs.
* Optimal graphs found by E. Monakhova.
* Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík.
* Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova.
* Graphs found by B. McKay.
* Graphs found by R. Lewis.
* Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
* Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan.
* Graphs found by D. Bevan, G. Erskine and R. Lewis.
* Graphs found by G. Erskine.
* Graphs found by O. Monakhov and E. Monakhova.

Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs

[math]d[/math]\[math]k[/math] 2 3 4 5 6 7 8 9 10 11 12
3
8
100%
12
100%
16
100%
20
100%
24
100%
28
100%
32
100%
36
100%
44
100%
48
100%
40
100%
4
13
100%
25
100%
41
100%
61
100%
85
100%
113
100%
145
100%
181
100%
221
100%
265
100%
313
100%
5
16
100%
36
100%
64
100%
100
100%
144
100%
196
100%
256
100%
324
100%
400
100%
484
100%
576
100%
6
21
100%
55
100%
117
100%
203
100%
333
100%
515
100%
737
100%
1 027
100%
1 393
100%
1 815
100%
2 329
100%
7
26
100%
76
100%
160
100%
308
100%
536
100%
828
100%
1 232
100%
1 764
100%
2 392
100%
3 608
88%
4 672
89%
8
35
100%
104
100%
248
100%
528
100%
984
100%
1 712
100%
3 649
76%
5 641
76%
8 361
76%
11 969
76%
16 641
75%
9
42
100%
130
100%
320
100%
700
100%
1 416
100%
3 530
72%
5 890
73%
9 290
73%
14 002
74%
20 330
74%
28 610
74%
10
51
100%
177
100%
681
67%
1 683
65%
3 653
65%
7 183
63%
13 073
63%
22 363
63%
36 365
63%
56 695
63%
85 305
62%
11
56
100%
210
100%
912
63%
2 364
60%
5 336
60%
10 836
61%
20 256
61%
35 436
61%
58 728
61%
93 060
61%
142 000
61%
12
67
100%
275
100%
1 289
64%
3 653
58%
8 989
56%
19 825
54%
40 081
53%
75 517
53%
134 245
52%
227 305
52%
369 305
52%
13
80
100%
312
100%
1 666
58%
4 942
54%
12 642
49%
28 814
51%
59 906
51%
115 598
50%
209 762
51%
361 550
51%
596610
50%
14
90
100%
381
100%
2 241
55%
7 183
51%
19 825
49%
48 639
48%
108 545
46%
224 143
46%
433 905
45%
795 455
44%
1 392 065
43%
15
96
100%
448
100%
2 816
50%
9 424
46%
27 008
45%
68 464
47%
157 184
44%
332 688
43%
658 048
42%
1 229 360
42%
2 187 520
42%
16
112
100%
833
62%
3 649
49%
13 073
45%
40 081
44%
108 545
41%
265 729
41%
598 417
39%
1 256 465
38%
2 485 825
37%
4 673 345
36%
17
130
100%
978
0%
4 482
0%
16 722
39%
53 154
38%
148 626
39%
374 274
36%
864 146
37%
1 854 882
36%
3 742 290
36%
7 159 170
35%

References

  • D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
  • R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
  • R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
  • E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
  • E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
  • E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal