Difference between revisions of "The Degree Diameter Problem for Circulant Graphs"
From Combinatorics Wiki
Line 80: | Line 80: | ||
<center> | <center> | ||
{| border="1" | {| border="1" | ||
− | | '''<math>d</math>\<math>k</math>'''|| '''2''' || '''3''' || '''4'''|| '''5''' || '''6''' || '''7''' || '''8''' || '''9''' || '''10''' || '''11''' || '''12''' | + | | '''<math>d</math>\<math>k</math>'''|| '''2''' || '''3''' || '''4'''|| '''5''' || '''6''' || '''7''' || '''8''' || '''9''' || '''10''' || '''11''' || '''12''' || '''13''' || '''14''' || '''15''' || '''16''' |
|- | |- | ||
|'''3''' | |'''3''' | ||
Line 128: | Line 128: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|36 | |36 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |40 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 145: | Line 151: | ||
| align="center" | | | align="center" | | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
− | | | + | |52 |
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |56 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |60 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |64 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 217: | Line 241: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|313 | |313 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |365 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |421 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |481 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |545 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 288: | Line 336: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|576 | |576 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |676 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |784 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |900 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |1024 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 359: | Line 431: | ||
{| border="2" style="background:rgb(180,180,255);" | {| border="2" style="background:rgb(180,180,255);" | ||
|2 329 | |2 329 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |2 943 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |3 629 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |4 431 | ||
+ | |- | ||
+ | |'''100%''' | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:rgb(180,180,255);" | ||
+ | |5 357 | ||
|- | |- | ||
|'''100%''' | |'''100%''' | ||
Line 430: | Line 526: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|4 672 | |4 672 | ||
+ | |- | ||
+ | |89% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |5 928 | ||
+ | |- | ||
+ | |88% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |7 392 | ||
+ | |- | ||
+ | |88% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |9 080 | ||
+ | |- | ||
+ | |89% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |11 008 | ||
|- | |- | ||
|89% | |89% | ||
Line 501: | Line 621: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|16 641 | |16 641 | ||
+ | |- | ||
+ | |75% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |22 569 | ||
+ | |- | ||
+ | |75% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |29 961 | ||
+ | |- | ||
+ | |75% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |39 041 | ||
+ | |- | ||
+ | |75% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |50 049 | ||
|- | |- | ||
|75% | |75% | ||
Line 572: | Line 716: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|28 610 | |28 610 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |39 210 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |52 530 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |69 002 | ||
+ | |- | ||
+ | |74% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |89 090 | ||
|- | |- | ||
|74% | |74% | ||
Line 643: | Line 811: | ||
{| border="2" style="background:#ABCDEF;" | {| border="2" style="background:#ABCDEF;" | ||
|85 305 | |85 305 | ||
+ | |- | ||
+ | |62% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |124 515 | ||
+ | |- | ||
+ | |62% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |177 045 | ||
+ | |- | ||
+ | |62% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |246 047 | ||
+ | |- | ||
+ | |62% | ||
+ | |} | ||
+ | | align="center" | | ||
+ | {| border="2" style="background:#ABCDEF;" | ||
+ | |335 137 | ||
|- | |- | ||
|62% | |62% |
Revision as of 15:17, 20 August 2019
Table of the orders of the largest known circulant graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
3 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 |
4 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 | 265 | 313 | 365 | 421 | 481 | 545 |
5 | 16 | 36 | 64 | 100 | 144 | 196 | 256 | 324 | 400 | 484 | 576 | 676 | 784 | 900 | 1 024 |
6 | 21 | 55 | 117 | 203 | 333 | 515 | 737 | 1 027 | 1 393 | 1 815 | 2 329 | 2 943 | 3 629 | 4 431 | 5 357 |
7 | 26 | 76 | 160 | 308 | 536 | 828 | 1 232 | 1 764 | 2 392 | 3 180 | 4 144 | 5 236 | 6 536 | 8 060 | 9 744 |
8 | 35 | 104 | 248 | 528 | 984 | 1 712 | 2 768 | 4 280 | 6 320 | 9 048 | 12 552 | 17 024 | 22 568 | 29 408 | 37 664 |
9 | 42 | 130 | 320 | 700 | 1 416 | 2 548 | 4 304 | 6 804 | 10 320 | 15 004 | 21 192 | 29 068 | 39 032 | 51 300 | 66 336 |
10 | 51 | 177 | 457 | 1 099 | 2 380 | 4 551 | 8 288 | 14 099 | 22 805 | 35 568 | 53 025 | 77 572 | 110 045 | 152 671 | 208 052 |
11 | 56 | 210 | 576 | 1 428 | 3 200 | 6 652 | 12 416 | 21 572 | 35 880 | 56 700 | 87 248 | 128 852 | 184 424 | 259 260 | 355 576 |
12 | 67 | 275 | 819 | 2 120 | 5 044 | 10 777 | 21 384 | 39 996 | 69 965 | 117 712 | 190 392 | 295 840 | 448 920 | 662 680 | 952 985 |
13 | 80 | 312 | 970 | 2 676 | 6 256 | 14 740 | 30 760 | 57 396 | 106 120 | 182 980 | 295 840 | 476 100 | 732 744 | 1 081 860 | 1 593 064 |
14 | 90 | 381 | 1 229 | 3 695 | 9 800 | 23 304 | 49 757 | 103 380 | 196 689 | 350 700 | 593 989 | 996 240 | 1 603 216 | 2 486 227 | 3 843 540 |
15 | 96 | 448 | 1 420 | 4 292 | 12 232 | 32 092 | 68 944 | 142 516 | 276 928 | 514 580 | 908 480 | 1 550 228 | 2 566 712 | 4 013 468 | 6 155 056 |
16 | 112 | 518 | 1 788 | 5 847 | 17 733 | 44 328 | 107 748 | 232 245 | 479 255 | 924 420 | 1 702 428 | 2 982 623 | 5 209 347 | 8 476 048 | 13 588 848 |
17 | 130 | 570 | 1 954 | 6 468 | 20 360 | 57 684 | 136 512 | 321 780 | 659 464 | 1 350 820 | 2 479 104 | 4 557 364 | 7 729 000 | 13 275 108 | 21 252 864 |
18 | 138 | 655 | 2 645 | 8 248 | 27 273 | 80 940 | 205 601 | 483 523 | 1 078 280 | 2 202 955 | 4 388 640 | 8 068 383 | 14 718 984 | 25 609 955 | 43 068 508 |
19 | 156 | 722 | 2 696 | 9 652 | 30 864 | 99 420 | 257 144 | 652 004 | 1 388 608 | 3 101 860 | 6 100 520 | 11 797 684 | 21 659 528 | 38 156 524 | 66 601 304 |
20 | 171 | 815 | 3 175 | 12 396 | 39 733 | 132 720 | 358 089 | 930 184 | 2 232 648 | 4 529 265 | 10 121 820 | 19 505 285 | 38 155 632 | 70 612 644 | 119 170 289 |
The following table is the key to the colors in the table presented above:
Color | Details |
* | Numbers in bold indicate graphs known to be optimal. |
* | Optimal graphs. |
* | Optimal graphs found by E. Monakhova. |
* | Graphs found by H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík. |
* | Graphs found by R. Dougherty and V. Faber and independently for d=6 by E. Monakhova. |
* | Graphs found by B. McKay. |
* | Graphs found by R. Lewis. |
* | Graphs found by R. Lewis and independently by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by R. Feria-Puron, H. Pérez-Rosés and J. Ryan. |
* | Graphs found by D. Bevan, G. Erskine and R. Lewis. |
* | Graphs found by G. Erskine. |
* | Graphs found by O. Monakhov and E. Monakhova. |
Table of the lowest upper bounds known at present, and the percentage of the order of the largest known graphs
[math]d[/math]\[math]k[/math] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||||||||||||||||||||||||
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||
11 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
12 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
13 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
14 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
15 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
16 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
17 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
18 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
19 |
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||
20 |
|
|
|
|
|
|
|
|
|
|
|
References
- D. Bevan, G. Erskine, and R. Lewis. Large circulant graphs of fixed diameter and arbitrary degree. ArXiv
- R. Feria-Puron, J. Ryan, and H. Perez-Roses. Searching for Large Multi-Loop Networks. Electronic Notes in Discrete Mathematics, vol. 46 (2014), pp. 233-240. doi:10.1016/j.endm.2014.08.031. Link to journal
- R.R. Lewis. The Degree/Diameter Problem for Circulant Graphs of Degree 8 and 9. The Electronic Journal of Combinatorics, vol. 21(4) (2014), #P4.50. Link to journal
- E.A. Monakhova, Synthesis of optimal Diophantine structures, Comput. Syst. Novosibirsk , 80 (1979), p.18--35. (in Russian).
- E. Monakhova, Optimal Triple Loop Networks with Given Transmission Delay: Topological Design and Routing, Inter. Network Optimization Conference, (INOC'2003), Evry/Paris, France, (2003), p.410--415.
- E.A. Monakhova . On synthesis of multidimensional circulant graphs of diameter two, Bulletin of the Tomsk Polytechnic University. 323(2) (2013), p.25--28. (in Russian). Link to journal