Ex(n;6)
From Combinatorics Wiki
Revision as of 06:43, 30 March 2011 by CW>KimMarshall
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 |
10 | 11 | 12 | 14 | 15 | 17 | 18 | 20 | 22 | 23 | 25 |
20 | 27 | 29 | 31 | 33 | 36 | 37 | 39 | 41 | 43 | 45 |
30 | 47 | 49 | 50-54 | 52-56 | 55-58 | 57-61 | 59-63 | 61-65 | 62-68 | 64-70 |
40 | 67-73 | 69-75 | 71-77 | 73-80 | 75-82 | 77-85 | 80-87 | 82-90 | 84-92 | 87-95 |
50 | 88 | 89 | 90 | 92 | 95 | 98 | 101 | 104 | 107 | 110 |
60 | 113 | 115 | 118 | 121 | 124 | 127 | 130 | 134 |
|
The following table is the key to the colors in the table presented above:
Color | References |
* | E. Abajo and A. Diánez <ref>E. Abajo, A. Diánez, Size of Graphs with High Girth, Electronic Notes in Discrete Mathematics 29 (2007) 179--183</ref> |
* | Tang et al. <ref>J. Tang, Y. Lin, M. Miller, C. Balbuena, Construction of EX graphs, Special Issue of International Journal of Computer Mathematics (2009)</ref> |
* | Delorme et al. <ref>C. Delorme, E. Flandrin, Y. Lin, M. Miller and J. Ryan, On Extremal Graphs with Bounded Girth Electronic Notes in Discrete Mathematics, Volume 34, 1 August 2009, Pages 653-657</ref> |
* | Exoo and Jajcay <ref>G. Exoo and R. Jajcay (2008), "Dynamic cage survey", The Electronic Journal of Combinatorics, Dynamic survey DS16 PDF version</ref> |
* | Marshall <ref>K Marshall, Interpolated lower bounds due to known large graphs.</ref>. |
References
<references />