Ex(n;t)
From Combinatorics Wiki
Values shown in bold are known exact values. Other values are lower bounds. If two values are shown then they are the lower and upper bounds.
n/t | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
5 | 6 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
6 | 9 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
7 | 12 | 8 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
8 | 16 | 10 | 8 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 7 |
9 | 20 | 12 | 10 | 9 | 9 | 9 | 8 | 8 | 8 | 8 | 8 |
10 | 25 | 15 | 12 | 11 | 10 | 10 | 10 | 9 | 9 | 9 | 9 |
11 | 30 | 16 | 14 | 12 | 12 | 11 | 11 | 11 | 10 | 10 | 10 |
12 | 36 | 18 | 16 | 14 | 13 | 12 | 12 | 12 | 12 | 11 | 11 |
13 | 42 | 21 | 18 | 15 | 14 | 14 | 13 | 13 | 13 | 13 | 12 |
14 | 49 | 23 | 21 | 17 | 16 | 15 | 15 | 14 | 14 | 14 | 14 |
15 | 56 | 26 | 22 | 18 | 18 | 16 | 16 | 15 | 15 | 15 | 15 |
16 | 64 | 28 | 24 | 20 | 19 | 18 | 17 | 17 | 16 | 16 | 16 |
17 | 72 | 31 | 26 | 22 | 20 | 19 | 18 | 18 | 18 | 17 | 17 |
18 | 81 | 34 | 29 | 23 | 22 | 21 | 20 | 19 | 19 | 18 | 18 |
19 | 90 | 38 | 31 | 25 | 24 | 22 | 21 | 20 | 20 | 20 | 19 |
20 | 100 | 41 | 34 | 27 | 25 | 23 | 23 | 22 | 21 | 21 | 21 |
21 | 110 | 44 | 36 | 29 | 27 | 25 | 24 | 23 | 22 | 22 | 22 |
22 | 121 | 47 | 39 | 31 | 29 | 27 | 25 | 24 | 24 | 23 | 23 |
23 | 132 | 50 | 42 | 33 | 30 | 28 | 27 | 26 | 25 | 24 | 24 |
24 | 144 | 54 | 45 | 36 | 32 | 29 | 28 | 27 | 27 | 26 | 25 |
25 | 156 | 57 | 48 | 37 | 34 | 30 | 30 | 28 | 28 | 27 | 26 |
26 | 169 | 61 | 52 | 39 | 36 | 32 | 31 | 30 | 29 | 28 | 28 |
27 | 182 | 65 | 53 | 41 | 38 | 33-34 | 32 | 31 | 30 | 30 | 29 |
28 | 196 | 68 | 56 | 43 | 40 | 34-36 | 34 | 33 | 32 | 31 | 30 |
29 | 210 | 72 | 58 | 45 | 42 | 36-38 | 36 | 34 | 33 | 32 | 32 |
30 | 225 | 76 | 61 | 47 | 45 | 37-41 | 37-38 | 34 | 33 | 33 | |
31 | 240 | 80 | 64 | 49 | 46 | 39-43 | 38-40 | 36 | 34 | 34 | |
32 | 256 | 85 | 67 | 51 | 47 | 40-45 | 40-42 | 37 | 36 | 35 | |
33 | 272 | 87 | 70 | 53-54 | 49 | 41-47 | 42-44 | 37 | 36 | ||
34 | 289 | 90 | 74 | 55-56 | 51 | 43-50 | 43-46 | 39 | 38 | ||
35 | 306 | 94 | 77 | 57-61 | 53 | 45-53 | 44-48 | 40 | 39 | ||
36 | 324 | 99 | 81 | 59-63 | 55 | 46-55 | 46-50 | 40 | |||
37 | 342 | 104 | 84 | 61-65 | 56-58 | 47 | 48-52 | 42 | |||
38 | 361 | 109 | 88 | 62-68 | 58-60 | 49 | 49-54 | 43 | |||
39 | 380 | 114 | 92 | 64-70 | 60-63 | 51 | 50-56 | ||||
40 | 400 | 120 | 96 | 67-73 | 62-65 | 53 | 52-58 | ||||
41 | 420 | 124 | 100 | 69-75 | 64-67 | 54 | 54-60 | ||||
42 | 441 | 129 | 105 | 71-77 | 65-69 | 56 | 55-62 | ||||
43 | 462 | 134 | 106-108 | 73-80 | 67-71 | 58 | 57-64 | ||||
44 | 484 | 139 | 108-112 | 75-82 | 69-73 | 60 | 59-66 | ||||
45 | 506 | 144 | 110-116 | 77-85 | 71-76 | 61 | 60-68 | ||||
46 | 529 | 150 | 114-119 | 80-87 | 73-78 | 63 | 61-70 | ||||
47 | 552 | 156 | 118-123 | 82-90 | 75-80 | 65 | 63-72 | ||||
48 | 576 | 162 | 122-127 | 84-92 | 77-82 | 67 | 64-74 |
| |||
49 | 600 | 168 | 125-131 | 87-95 | 79-84 | 69 | 66-76 | ||||
50 | 625 | 175 | 130-135 | 81-87 | 70 | 68-78 |
The following table is the key to the colors in the table presented above:
Color | References |
* | Folklore. |
* | Mantel's theorem for t=3 <ref>Mantel's theorem</ref> |
* | Garnick, Kwong and Lazebnik<ref>D. K. Garnick and Y. H. H. Kwong, F. Lazebnik, Extremal graphs without three-cycles or four-cycles, J. Graph Theory, 17 (1993), 633--645</ref>. |
* | Garnick and Nieuwejaar<ref>D. K. Garnick and N.A. Nieuwejaar, Non-isomorphic extremal graphs without three-cycles or four-cycles, JCMCC, 12 (1992), 33--56</ref>. |
* | E. Abajo and A. Diánez <ref>E. Abajo, A. Diánez, Size of Graphs with High Girth, Electronic Notes in Discrete Mathematics 29 (2007) 179--183</ref> |
* | E. Abajo and A. Diánez <ref>E. Abajo, A. Diánez, Exact values of ex(v;{C3,C4,... , Cn}), Discrete Applied Mathematics 158 (2010) 1869--1878</ref> |
* | Tang et al. <ref>J. Tang, Y. Lin, M. Miller, C. Balbuena, Construction of EX graphs, Special Issue of International Journal of Computer Mathematics (2009)</ref> |
* | Delorme et al. <ref>C. Delorme, E. Flandrin, Y. Lin, M. Miller and J. Ryan, On Extremal Graphs with Bounded Girth Electronic Notes in Discrete Mathematics, Volume 34, 1 August 2009, Pages 653-657</ref> |
* | Delorme et al. <ref>C. Delorme, E. Flandrin, Y. Lin, M. Miller, K. Marshall and J. Ryan, New exact values of ex(n;6), preprint</ref> |
* | Marshall et al. <ref>K. Marshall, M. Miller and J. Ryan, Extremal Graphs without Cycles of length 8 or less, preprint</ref> |
* | K. Marshall and Y. Lin <ref>K. Marshall and Y. Lin, Extremal {C3,C4,.. ,C9}-free graphs, submitted IWOCA 2011t</ref> |
References
<references />